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The study of compound nuclear reactions is a vast and diverse field — here we focus
on resonance reactions. We briefly summarize efforts at addressing the major issues: A —
How to measure the resonances, B — How to categorize resonances (spin, parity, resonance
energy and strength), C — How to describe the distribution of resonances strengths and
spacings, D — How to assess data quality. Sample illustrative examples are provided for
each of these topics.




COMPOUND NUCLEUS

A --ISOLATED RESONANCES
B -- OVERLAPPING RESONANCES

C -- CONTINUUM

FOCUS TODAY ON ISOLATED RESONANCES

REGIONBISMYSTERYTOME .. .. ... ... ..

REGION C
HAUSER-FESHBACH
MANY EXPERTS ARE HERE

THEORY AND EXPERIMENT




QUASI-STATIONARY STATES AT HIGH EXCITATION
LED TO BOHR AND COMPOUND NUCLEUS

RESONANCES VERY IMPORTANT FOR
REACTORS, STEWARDSHIP, ASTROPHYSICS...

THEREFORE ISSUES

HOW TO MEASURE RESONANCES

HOW TO CATEGORIZE RESONANCES
(RESONANCE SPECTROSCOPY)

HOW TO DESCRIBE DISTRIBUTION OF RESONANCE
STRENGTHS AND SPACINGS

HOW TO ASSESS DATA QUALITY




o Fpithermal (0.1 — 10° &V) Neutron—Nucleus
scattering:
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NEED LOTS OF NEUTRONS
PLUS ENERGY RESCLUTION

USE ELECTRON MACHINES
ORELA
RPI
GEEL (IRMM)

SAROV

SPALLATION NEUTRON SOURCES
USE HIGH ENERGY PROTONS
CREATE LOTS OF NEUTRONS

MODERATE
USE TIME OF FLIGHT
HISTORICAL
NEVIS SYNCHROCYLOTRON
RAINWATER AND HAVENS
NOW
LANSCE

N_TOF (CERN)




o Fpithermal (0.1 — 10° V) Neutron—Nucleus
scattering:
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AFTER MEASURING RESONANCES
HOW TO CATEGORIZE
FIRST ORBITAL ANGULAR MOMENTUM
SIMPLEST
S-WAVES STRONG

P-WAVES WEAK

FORMALIZED WITH BAYESIAN

PROBABILISTIC ARGUMENT
(BOLLINGER- THOMAS)

WEAKEST S-WAVE OR STRONGEST P-WAVE?

VERY DIFFICULT TO GET |
SUFFICIENT HIGH QUALTIY P-WAVE DATA

SOLUTIONS

BUT MORE COMPLICATED




PARITY DEPENDENCE

FOR LOW ENERGY NEUTRONS ON HEAVY
NUCLEI THE DIFFERENCE IN PENETRABILITY
FOR S AND P IS OF ORDER 10,000 OR MORE

THEREFORE VERY DIFFICULT TO GET GOOD
LEVEL DENSITIES FOR DIFFERENT PARITIES

VERY LITTLE P-WAVE DATA
EXCEPT NEAR
STRENGTH FUNCTION MAXIMA

MOST RECENT DATA
BY PRODUCT FROM
“TRIPLE COLLABORATION”
PARITY VIOLATION STUDIES
ON P-WAVE NEUTRON RESONANCES
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FIG. 2: Neutron resonances in the “*Mo(n, ¥)%Mo reaction: the DANCE detector yield versus neutron energy. The
yield is the number of observed capture events per TOF channel with multiplicity M > 1 and a y-ray sum energy
from 7.6 to 9.2 MeV.




EXAMPLE 95Mo
GROUND STATE OF 95Mo I =5/2+

SOJ=20R3
GROUND STATE OF CN 96Mo IS J =0
ALMOST ALL GAMMA DECAY IS DIPOLE
THEREFORE ONE EXPECTS MORE GAMMA RAYS
FROM DECAY OF RESONANCE WITH J =3
JARGON -- NUMBERS OF TRANSITIONS TO GROUND

MULTIPLICITY

AVERAGE M VALUABLE BUT NOT SUFFICIENT
WITHOUT KNOWING PARITY




— J'=2", En=554 eV’ T
""" J'=3, En =708 eV
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FIG. 5: Measured y-ray energy spectra for an s-wave resonance at 554 eV (J™ = 2*%) and a p-wave resonance at 708
eV (J™ = 37) in the **Mo(n,¥)**Mo reaction. These spectra correspond to two-step cascades with the -ray sum
energy window from 7.6 to 9.2 MeV.
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FIG. 3: Multiplicity distributions for s-wave resonances at 263 eV (J™ = 2%) and 359 eV (J™ = 3%) in the
%Mo(n,y)?¢Mo reaction. ,
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FIG. 4: Average multiplicities of s-wave neutron resonances from the %5Mo(n, 7)Mo reaction in the neutron’ energy
range from 40 to 2100 eV. Values along the lower line correspond to spin J = 2 and along the upper line to spin
J=3.
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RANDOM MATRICES AND NUCLEI

TWO ROLES

ONE
EVALUATE SPECTRA -- DOES RMT WORK?
IF YES, THEN GENERIC

IF NOT, EXAMINE DYNAMICS

TWO
ASSUME RMT APPLIES

USE RMT TO DETERMINE DATA QUALITY




PROBLEM
RMT APPLIES TO SPECTRA THAT ARE
A --PURE
B -- COMPLETE
C -- SUFFICIENT STATES
FOR STATISTICAL APPROACH
HOW MANY ARE SUFFICIENT ?

DEPENDS ON MEASURE

PURE - ALL STATES WITH SAME
QUANTUM NUMBERS

COMPLETE - NO MISSING STATES

REAL WORLD

THESE REQUIREMENTS
VERY DIFFICULT TO SATISFY




THEREFORE ISSUE BECOMES

SENSITIVITY OF MEASURES
TO VARIOUS KINDS OF
EXPERIMENTAL LIMITATIONS

TESTS FOR LONG RANGE CORRELATIONS
EXTREMELY SENSITIVE
TO MISSING OR SPURIOUS LEVELS

VERY BAD FOR ROLE 1 -
TESTING SPECTRA

VERY GOOD FOR ROLE 2 -
EVALUATING DATA QUALITY




DOES RANDOM MATRIX THEORY APPLY?

1963 DYSON TESTED COLUMBIA NEUTRON DATA
COULD NOT DECIDE WHETHER RMT APPLIED
LATE 1960S

RAINWATER HAD GOOD NEUTRON RESONANCE DATA
BUT LIMITED STATISTICS

MID 1970s
TUNL HAD GOOD PROTON RESONANCE DATA
BUT EVEN MORE LIMITED STATISTICS
EARLY 1980s
BOHIGAS, HAQ AND PANDEY
COMBINED BEST NEUTRON AND PROTON DATA INTO
NUCLEAR DATA ENSEMBLE
SPACING DISTRIBUTION UNIVERSAL

AGREES VERY WELL WITH GOE
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o Epithermal (0.1 — 10° €V) Neutron—Nucleus

scattering:
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STATISTICAL THEORY OF THE ENERGY
LEVELS OF COMPLEX SYSTEMS. V

M. L. MEHTA AND F. J. DYSON
J. MATH. PHYS. 4 (1963)

PROBLEM H. STATISTICAL EFFECTS
OF MISSING AND SPURIOUS LEVELS

...DESIRABLE TO MAKE THE RESULTS ... MORE
PRECISE BY CALCULATING QUANTITATIVELY THE
EFFECTS OF MISSING AND SPURIOUS LEVELS. TO
CARRY THROUGH SUCH CALCULATIONS WOULD
NOT BE DIFFICULT, ONLY RATHER LABORIOUS.




Random Matrix Theory ( RMT)
= Assume RMT

1. Reduced widths obey Porter-Thomas

distribution

1
P(y)dy = o P g)dy
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2 Resoﬁ’aﬁce spacings are dlsmbuted
according to Wigner distribution
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2

Levels with y< y = <y‘;> are undetectable
Y

Standard method:
21 : _ ' 2 _27;’2
{’yi },z—l,NO — <y >—- N
Y o
7y . =
o)

Ymin
MF = Missing fraction = [ P( y)dy
0

: Ymin
MS = Missing strength = [ yP( y)dy
0

/N

o XY +MS
v >“NO/(1-MF)

until converges




USE PORTER-THOMAS |
TO DETERMINE MISSING LEVELS

PLUS
ONE MISSES THE WEAKEST LEVELS
USE THAT INFORMATION

MINUS
NONSTATISTICAL EFFECTS
CAN HAVE MAJOR IMPACT

EXAMPLE
DOORWAY STATE
MAY HAVE MANY TIMES
AVERAGE STRENGTH -
AND
LARGE EFFECT ON ANALYSIS
FOR MISSING FRACTION




(I'D) =0 = use spacing analysis
| as independent test

Spacing: minimal effect due to non-
statistical phenomena. However, levels
missed at random therefore analysis is
harder to formulate |

Question:




GOE




A. Perfect sequence = all levels are observed.

A N 0 N 0 W 0. W . W . WY 0 N W . W 0 W0 W
NS TN\ T T OO OO

Number of spacings type 0 =11
O+Di1 =11

B. Imperfect sequence = levels are missing.

N v N N N N N N Y
N N AN N A N N AN AN

O,

Number of spacings type 0 = 5
type 1 =3
(O+1)5+(1+1)3 =11

C. Imperfect sequence = levels are missing.

NN N N N N N Y

NN ' ! A J Y T AR
Number of spacings type 0 =4
type 1 =2
type2=1

(O+1)4+(1+1)24+2+1DH1 =11




O. Bohigas and M. P. Pato, Physics Letters
B 595, 171 (2004)

53(L)'=(1-f)-1£5 + f? As(?)
*(L)=Q1-HL + f> ZQ(-‘;—)

Note linear term
for f <1




Expand the spacing distribution in terms
of higher order distributions:

P(2)dz = ¥ a, A p(k, Az)d
" k

Normalizations

P@d=1  [2P@)dr=1
0 0

ok, 2)dz=1  [zp(k,2)dz =k +1
0 0

- lead to conditions:

(a), %ak =1
k=0

). Sa,(1+k) =1
k=0




Introduce entropy:

. |
S{ak} - — Zﬁk lﬂak
' k=0
and introduce two Lagrange multipliers

o and B (because there are 2 constraint
- equations)

S\S-aXa ~pYa,(1+k)/ 1) =0

ap =(1-f)* 7
A=1/f

‘Using these results and denoting Az = x
one obtains:

P()dr =3 (1~ £)F £ p(k, x)dx
k




Introduce entropy:

: o0
S{Qk} = — Zﬁk h’lﬁk
' k=0
and introduce two Lagrange multipliers

o and 3 (because there are 2 constraint
- equations)

S{S—aXa - B a,(1+k)/ 1} =0

a, =1~ f
A=1/f

Using these results and denoting Az = x
one obtains:

P(x)dx = Y(1~ £)F f p(k, x)dx
k
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n+ U =12t
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200 -
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Method 2: Spacing analysis f = 0.89 +0.06
less than f = O.97f8_'g§’ from method 1.




